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Fine-scale scalar mixing in gas-phase planar turbulent jets is studied using measure-
ments of three-component scalar gradient and scalar energy dissipation rate fields.
Simultaneous planar Rayleigh scattering and planar laser-induced fluorescence,
applied in parallel planes, yield the three-dimensional scalar field measurements. The
spatial resolution is sufficient to permit differentiation in all three spatial directions.
The data span a range of outer-scale Reynolds numbers from 3290 to 8330. Direct
measurement of the thicknesses of scalar dissipation structures (layers) shows that
the thicknesses scale with outer-scale Reynolds number as Re−3/4

δ , consistent with
Kolmogorov/Batchelor scaling. Average layer thicknesses are described by the relation

λD = 14.5 δ Re−3/4
δ Sc−1/2. There is no evidence here that Taylor scaling (λD ∝ δ Re−1/2

δ )
plays a significant role in the scalar dissipation process. The present data resolve a
range of length scales from the dissipation scales up to nearly the jet full width, and
thus can be used in a priori testing of subgrid models for scalar mixing in large-eddy
simulations (LES). Comparison of two models for subgrid scalar variance, a scale-
similarity model and a gradient-based model, indicates that the scale-similarity model
is more accurate at larger LES filter sizes.

1. Introduction
Turbulent scalar mixing has been a subject of continual interest in fluid mechanics

and associated fields. The mixing of two fluid streams is fundamentally important to
a broad spectrum of engineering applications. In combustion systems, for example,
molecular mixing of fuel and oxidizer is a necessary precursor to chemical reaction.
The scalar dissipation rate, χ ≡ D∇C · ∇C, where C(x, t) is a conserved scalar and D

is the scalar diffusivity, is a quantity of particular interest to the understanding and
modelling of turbulent non-premixed combustion. Mathematically, it represents the
loss term in the evolution equation for 1

2
C2, the scalar ‘energy’:(

∂

∂t
+ u · ∇ − D∇2

)
1
2
C2 = −D∇C · ∇C ≡ −χ. (1.1)

Physically, χ can be interpreted as a mixing rate, or equivalently as a rate at
which scalar fluctuations are destroyed. More specifically for combustion applications,
Peters (1983) identified χ−1 as a characteristic diffusion time scale, imposed by the
mixing field. Then, local flame extinction could be explained by the scalar dissipation
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rate exceeding a critical value, thus making the diffusion time smaller than the
chemical time of the local flame structure. Accurate representation of flame quenching
and stabilization poses notable difficulties for computations of non-premixed flames,
because dissipation of this scalar energy can occur at the finest mixing length scales
of the flow. This means that modelling is required for the scalar dissipation rate in, for
example, large-eddy simulations (LES) of turbulent non-premixed combustion, where
the filtered mixture fraction is used as a starting point to describe the combustion.

Scalar mixing has also been studied with the aim of increasing the understanding
of the physics of turbulent flows at small scales. Much effort has been devoted to
assessing the validity of the universal similarity hypotheses of Kolmogorov (1941a, b,
1962) as applied to scalar fields. The work of Obukhov (1949), Corrsin (1951),
Batchelor (1959), Batchelor, Howells & Townsend (1959) and others established that,
where the scalar diffusivity and the kinematic viscosity are of comparable magnitudes,
turbulent scalar field statistics at the small scales can be viewed analogously to the
statistics of the turbulent velocity field. (For small and large scalar diffusivity, D � ν

and D � ν, respectively, additional mixing regimes arise that require extensions to the
basic hypotheses.) Measurements of turbulent scalar fields thus provide an alternative
means for assessing fundamental theories for turbulent flows.

Studies of turbulent scalar mixing have benefited a great deal from developments
in laser-based flow diagnostic techniques. Planar measurement techniques such as
planar Rayleigh scattering and planar laser-induced fluorescence (PLIF) afford
direct experimental access to structural information in turbulent flows. Using these
techniques it is possible to investigate directly such aspects of turbulent mixing as
the topology of scalar mixing structures, the instantaneous distribution of mixing
length scales, or fractal properties of mixing fields. Recognizing that turbulence is
inherently three-dimensional, the possibility of extending these planar techniques
to three dimensions is an attractive one. Three-dimensional measurements would
obviate isotropy assumptions and other models intended to represent the full three-
dimensionality of turbulent mixing from two-dimensional measurements.

Previous efforts at three-dimensional scalar field imaging in gas-phase flows have
used either simultaneous two-plane Rayleigh scattering (Yip & Long 1986), or
multi-plane scattering or PLIF, in which a single laser sheet is scanned through
a three-dimensional volume (Yip et al. 1987; Yip, Schmitt & Long 1988). The
former measurements, however, showed somewhat weak signal levels, while the latter
technique suffers from temporal resolution limitations introduced by the laser sheet
scanning. In particular, successive planes are both spatially and temporally distinct,
compromising the interpretation of the data as purely three-dimensional in space. The
liquid-phase measurements of Prasad & Sreenivasan (1990), Dahm, Southerland &
Buch (1990) and Southerland & Dahm (1994) also involved the scanning of a single
laser sheet. In those experiments, the higher kinematic viscosity of water resulted in
time scales much longer than those in gas-phase flows at similar Reynolds numbers,
minimizing the effect of temporal skewing between planes. To date, these experiments
in water flows have represented the only extensive experimental studies of three-
dimensional turbulent scalar mixing. However, the Schmidt number (Sc ≡ ν/D) of
water is three orders of magnitude higher than the Schmidt numbers typical of gases.
Interpretation of water flow scalar measurements in the context of the gas phase (for
combustion applications, for example) is, therefore, somewhat ambiguous.

Su & Clemens (1999) introduced an approach to three-dimensional scalar
field imaging in the gas phase in which Rayleigh scattering and PLIF, applied
simultaneously in separate planes, yield the three-dimensional scalar measurements.
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This technique avoids the temporal skewing of scanning-based measurements, while
the high efficiency of the fluorescence yields superior signal quality to two-plane
Rayleigh scattering, for similar laser energy input. Su & Clemens (1999) described
the implementation of the measurement technique in detail, and presented some
preliminary analysis of the three-dimensional imaging data.

In this paper, we present a more extensive investigation of fine-scale turbulent
mixing in the gas phase, using the three-dimensional turbulent scalar mixing data
of Su & Clemens (1999). The flow considered in this study is a co-flowing, planar
turbulent jet. The spatial resolution of the measurements is specified to resolve the
expected finest scalar mixing length scale, using the estimate of this scale reported
by Buch & Dahm (1998). The flow field and diagnostic method are discussed in § 2.
Section 3 presents statistical analyses of the scalar power spectra and dissipation rate
fields.

The primary goals of this study are to determine the magnitude of the dissipation,
or inner, length scale of turbulent mixing and also the dependence of that scale on
the flow outer-scale Reynolds number. In particular, we seek to confirm the Re−3/4

δ

scaling (Kolmogorov/Batchelor scaling) of the scalar dissipation length scale through
direct measurement of three-dimensional dissipation field structures. Dowling (1991)
used time-resolved single-point scalar concentration measurements to estimate the
scalar dissipation rate, χ , and concluded that the smallest length scales indeed have
a Re−3/4

δ dependence. However, the estimation of χ from those data required both

Taylor’s hypothesis and the assumption of local isotropy, and the Re−3/4
δ dependence

was only inferred through a comparison with Re−1/2
δ (Taylor) scaling; specifically, the

dependence of the dissipation scale on Reδ was not measured explicitly. A discussion
of the definition of the dissipation length scale is given in § 1.1, and § 4 discusses
the results for the magnitude and Reynolds number scaling of the dissipation scale
obtained from the present measurements.

While advances in imaging technology have made possible direct access to large-
scale turbulent structures, it is, conversely, partly through a recognition of the limits
of computing technology that the field of turbulent flow simulation has arrived at
structure-based methods, such as LES. At the intersection of these trends, experimental
information of immediate use to LES is available. The present measurements, for
example, encompass a range of scales from the dissipation scales up to nearly the
full flow width, and thus offer great potential for a priori testing of LES subgrid
models for scalar mixing. Section 5 presents sample results from a priori testing of
two well-known subgrid models for the scalar variance, a gradient-based model and
a scale similarity model. Finally, § 6 summarizes the major conclusions of this study.

1.1. Dissipation length scale definitions

Discussions of the dissipation length scales in turbulence are subject to some
confusion because a variety of definitions are commonly used. Here we will outline
the relationships among the various definitions. Kolmogorov’s universal equilibrium
hypothesis, that the small-scale properties of turbulence should be determined only
by the rate of kinetic energy dissipation and the kinematic viscosity of the fluid
(Kolmogorov 1941b), yields the Kolmogorov length scale

η ≡ (ν3/ε)1/4. (1.2)

The Kolmogorov scale is often cited as the dissipation (or more strongly, smallest)
length scale in turbulent flows. However, a priori it can at most be assumed that
η is proportional to the dissipation length scale. In this paper, we will denote the
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true turbulence dissipation length scale as λν , which relates to the Kolmogorov scale
through the proportionality constant ΛK , as

λν = ΛK η = ΛK (ν3/ε)1/4. (1.3)

Subsequent to the early work of Kolmogorov, Batchelor (1952) applied similar
arguments to the problem of scalar mixing, and showed that the ratio of the dissipation
scales in the velocity and scalar gradient fields depends on the square root of the
Schmidt number, Sc ≡ ν/D, where D is the molecular diffusivity. Analogously to the
Kolmogorov scale, the Batchelor scale ηB is thus defined as ηB ≡ η Sc−1/2, and we
denote the scalar dissipation length scale as λD , where

λD = ΛB ηB = ΛB(ν3/ε)1/4Sc−1/2 (1.4)

with proportionality constant ΛB .
The dissipation length scales can be expressed in terms of outer-scale flow variables

by using the relation ε ∝ U 3/δ (Taylor 1935). Then η scales as η ∝ δ Re−3/4
δ ,

where Reδ ≡ Uδ/ν is the outer-scale Reynolds number, and (1.3) and (1.4) become,
respectively,

λν = Λνδ Re−3/4
δ , (1.5)

λD = ΛD δ Re−3/4
δ Sc−1/2. (1.6)

The proportionality constants Λν and ΛD will in general be different from the
constants ΛK and ΛB in (1.3) and (1.4).

Quantifying the turbulence length scales can also proceed by noting that the
thicknesses of structural features in the velocity or scalar gradient fields will be
determined by the competing effects of compressive normal strain, which acts to
make these structures thinner, and diffusion, which tends to thicken them. On the
dissipative scales, the fluctuating normal strain rate is given by s11 ∝ (U/δ) Re1/2

δ (e.g.
Tennekes & Lumley 1972). If λν is determined solely by s11 and the viscosity, ν, and
if λD is determined by s11 and D, then we can derive (1.5) and (1.6) from dimensional
considerations. Additionally, to a first approximation, the strain–diffusion mechanism
should differ between the velocity and scalar gradient fields mainly in the diffusivities,
which is accounted for by the Schmidt number. The proportionality constants in (1.5)
and (1.6) should therefore be equal, or Λ ≡ Λν = ΛD , giving

λν = Λ δ Re−3/4
δ , (1.7)

λD = Λ δ Re−3/4
δ Sc−1/2. (1.8)

In the present work, we will measure the Reδ dependence of the thicknesses, λD , of
scalar dissipation structures directly, aiming to verify the Re−3/4

δ scaling, and we will
also estimate the proper value of the proportionality constant, Λ.

Based on estimates of the scalar dissipation rate from time-resolved single-point
scalar concentration measurements, Dowling (1991) proposed an interesting adjunct
to the interpretation of the dissipation length scale. While confirming that the smallest
length scale that contributes to the scalar dissipation is λD , and that the bulk of the
dissipation occurs at this scale, Dowling suggested that the highest dissipation rates
occur at the larger Taylor scale, with a Re−1/2

δ dependence. The Taylor scale can be
interpreted physically as the length scale arising from a balance between the local
outer-scale strain and diffusion; given the local outer-scale strain rate, s ∝ U/δ, the
length scale dependent only on this strain rate and the viscosity is λ ∝ (νδ/U )1/2 =
δ Re−1/2

δ . Dowling thus concluded that the highest scalar dissipation rates occurred
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Figure 1. Sketch of the co-flowing planar turbulent jet, with a sample data plane from the
set labelled f2 in table 1. Also indicated are the full width at 5% of maximum of the mean
velocity profile, and the upstream and downstream limits of the measurement area for the full
set of data.

in regions experiencing the strain rate of the outer, or energy-containing, flow scales.
This hypothesis will also be explored in the present study.

2. Experimental conditions
This section describes the flow field in which the present measurements were

performed, provides a brief description of the optical and diagnostic arrangement,
and discusses spatial resolution and other issues related to the measurement of spatial
gradients. Full experimental details can be found in Su & Clemens (1999).

2.1. Flow field

The flow field investigated here is a co-flowing planar turbulent jet. A schematic of
this flow system is given in figure 1. The jet fluid consists of propane (C3H8), seeded
with acetone (C3H6O) for diagnostic purposes (§ 2.2), while the co-flow consists of air.
Acetone is seeded into the jet at approximately 5% by volume, so the jet fluid density,
ρ0, is roughly 1.54 times the density of the co-flowing air, ρ∞. The jet nozzle has width
h = 1mm and spans 150 mm. A total of 37 data sets were acquired, each consisting
of between 15 and 30 image pairs, for a total of 906 image pairs. Measurements were
performed at positions ranging from 64h to 127h downstream of the nozzle exit. The
imaging windows extend up to 21h off of the jet centreline in the cross-span direction.
Table 1 lists the experimental conditions for each of the data sets. For all of the data
sets, the co-flow velocity is U∞ = 0.3 m s−1.
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Set (vols.) U0 (m s−1) θ (h) x (h) y (h) ymax/ lM Reδ λD (µm)

a1 (30) 6.4 700 (−15, 19 ) ( 65, 99 ) 0.26 [ 3770, 4630 ] [ 510, 660 ]
b1 (30) 7.0 840 ” ” 0.23 [ 4120, 5060 ] [ 470, 610 ]
c1 (30) 7.1 860 ” ” 0.22 [ 4180, 5140 ] [ 470, 610 ]
d1 (30) 6.9 810 ” ” 0.23 [ 4060, 4990 ] [ 480, 620 ]
e1 (30) 6.0 620 ” ” 0.28 [ 3530, 4340 ] [ 530, 690 ]
f1 (29) 7.8 1040 ” ” 0.20 [ 4590, 5640 ] [ 440, 570 ]
g1 (18) 7.7 1010 ” ” 0.20 [ 4530, 5570 ] [ 440, 570 ]
h1 (30) 6.9 810 ” ” 0.23 [ 4060, 4990 ] [ 480, 620 ]
i1 (30) 5.6 540 (−13, 21 ) ” 0.30 [ 3290, 4050 ] [ 560, 720 ]
j1 (30) 5.6 540 ” ” 0.30 [ 3290, 4050 ] [ 560, 720 ]
n1 (30) 7.5 960 (−15, 19 ) ( 64, 98 ) 0.20 [ 4380, 5400 ] [ 450, 580 ]
o1 (30) 8.2 1150 ” ” 0.18 [ 4790, 5900 ] [ 420, 540 ]
p1 (29) 8.4 1210 ” ” 0.18 [ 4900, 6050 ] [ 410, 530 ]
q1 (10) 9.4 1510 ” ” 0.15 [ 5490, 6770 ] [ 380, 490 ]
q1a (20) 10.0 1710 ” ” 0.14 [ 5840, 7200 ] [ 360, 470 ]
r1 (10) 9.5 1540 ” ” 0.15 [ 5550, 6840 ] [ 370, 480 ]
r1a (20) 9.2 1450 ” ” 0.16 [ 5370, 6620 ] [ 380, 500 ]
s1 (29) 9.6 1580 ” ” 0.15 [ 5600, 6910 ] [ 370, 480 ]
t1 (30) 8.2 1150 (−14, 20 ) ( 70, 104 ) 0.19 [ 5010, 6080 ] [ 440, 560 ]
u1 (30) 8.3 1180 ” ” 0.19 [ 5070, 6160 ] [ 440, 560 ]
v1 (30) 8.3 1180 ” ” 0.19 [ 5070, 6160 ] [ 440, 560 ]
w1 (30) 10.0 1710 (−16, 18 ) ” 0.15 [ 6110, 7420 ] [ 380, 480 ]
x1 (30) 10.4 1850 ” ” 0.14 [ 6350, 7710 ] [ 370, 470 ]
y1 (30) 10.4 1850 ” ” 0.14 [ 6350, 7710 ] [ 370, 470 ]
z1 (30) 8.3 1180 (−14, 20 ) ( 81, 115 ) 0.21 [ 5450, 6480 ] [ 480, 590 ]
a2 (30) 8.5 1240 ” ” 0.20 [ 5580, 6630 ] [ 470, 580 ]
b2 (21) 8.5 1240 ” ” 0.20 [ 5580, 6630 ] [ 470, 580 ]
c2 (15) 10.6 1920 (−15, 19 ) ” 0.15 [ 6960, 8270 ] [ 400, 490 ]
d2 (15) 10.1 1750 ” ” 0.16 [ 6630, 7880 ] [ 410, 510 ]
e2 (15) 9.9 1680 ” ” 0.17 [ 6500, 7720 ] [ 420, 520 ]
f2 (15) 10.0 1710 ” ” 0.16 [ 6570, 7800 ] [ 420, 520 ]
g2 (15) 9.0 1390 ” ” 0.19 [ 5910, 7020 ] [ 450, 560 ]
h2 (15) 8.3 1180 ” ” 0.21 [ 5450, 6480 ] [ 480, 590 ]
i2 (15) 9.2 1450 (−14, 20 ) ( 93, 127 ) 0.20 [ 6470, 7540 ] [ 480, 580 ]
j2 (15) 9.2 1450 ” ” 0.20 [ 6470, 7540 ] [ 480, 580 ]
k2 (15) 9.4 1510 ” ” 0.20 [ 6620, 7710 ] [ 470, 570 ]
l2 (15) 10.2 1780 ” ( 92, 126 ) 0.17 [ 7140, 8330 ] [ 440, 540 ]
m2 (15) 9.3 1480 ” ” 0.20 [ 6410, 7600 ] [ 480, 580 ]
n2 (15) 9.2 1450 ” ” 0.20 [ 6440, 7510 ] [ 480, 580 ]

Table 1. Experimental conditions for the planar jet measurements. The jet exit excess velocity
is U0. θ is the momentum thickness defined in (2.1), in terms of the jet slot width, h. The x-
range values are the cross-span limits of the imaging windows in terms of h, while the y values
are the near- and far-downstream limits of the windows. ymax/ lM is the maximum downstream
distance normalized by the length scale lM , defined in (2.5), describing the relative importance
of the momentum and buoyancy fluxes. The Reδ values are the outer-scale Reynolds numbers
at the near- and far-downstream limits, and the λD are the corresponding limiting values of
the estimated dissipation length scale using ΛD = 11.2 in (1.8).

The proper scaling regime for the co-flowing planar turbulent jet is determined
through consideration of the momentum thickness, θ , defined in terms of the initial
jet excess momentum flux (per unit nozzle span), J0, as

J0 = ρ0U
2
0 h = ρ∞U 2

∞θ. (2.1)
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The resulting θ values for each data set are also given in table 1. Over the full set
of data, the maximum value of y/θ in the imaging region is 0.183, at the furthest
downstream measurement position in the sets i1 and j1. From Everitt & Robins
(1978), this is well within the range for which pure jet scaling pertains, so jet scaling
can be applied for all of the present data. The scalings for centreline velocity decay
and flow width used here follow Bradbury (1965) and Everitt & Robins (1978):

Uc = 2.4

(
ρ0

ρ∞

)1/2

U0

(y

h

)−1/2

, (2.2)

δ = δ0.05 = 0.39 y, (2.3)

where Uc is the centreline jet excess velocity, and δ = δ0.05 is the full width of
the jet velocity profile at 5% of maximum. For the planar jet, then, the jet-exit
Reynolds number is not adequate to describe local conditions, because the outer-
scale Reynolds number Reδ ≡ Uδ/ν evolves in the downstream direction, with a y1/2

dependence. (This contrasts with round jets, for which Reδ is constant.) The minimum
and maximum values of Reδ for the individual data sets, defined using Uc from (2.2),
δ from (2.3), and the kinematic viscosity of air at 1 atm and 300 K, ν = 0.155 cm2

s−1, are compiled in table 1. For the present data, Reδ ranges from 3290 (in sets i1
and j1) to a maximum of 8330 (in set l2).

The discrepancy between the jet fluid density, ρ0, and the ambient fluid density,
ρ∞, makes it necessary also to consider the effect of buoyancy in justifying the use
of pure-jet scaling relations. We will assume that the results of Kotsovinos & List
(1977) in positively buoyant planar turbulent jets can be applied to the current case
of negative jet buoyancy. Let β0 be the initial specific buoyancy flux per unit span,
and m0 the initial specific momentum flux, or

β0 ≡ g
|ρ0 − ρ∞|

ρ∞
U0 h, m0 ≡ J0/ρ0 = U 2

0 h, (2.4)

where g is the gravitational acceleration. These can be combined to form a length
scale, lM , describing the relative importance of momentum and buoyancy fluxes, as

lM ≡ m0

β
2/3
0

. (2.5)

From Kotsovinos & List (1977), positively buoyant planar turbulent jets are
momentum-driven, and follow jet-like scaling, for downstream positions y/lM � 0.4.
Table 1 lists ymax/ lM for each of the present data sets. The highest ymax/ lM is 0.30, for
sets i1 and j1; the majority of the data have ymax/ lM � 0.20. The data are all thus in
the momentum-driven regime, justifying the use of the jet scaling relations (2.2) and
(2.3).

2.2. Optical and diagnostic arrangement

The current measurements are performed by simultaneous Rayleigh scattering and
LIF in two parallel spatially distinct planes. This approach eliminates temporal
skewing effects, while the high efficiency of LIF yields much higher signal levels for
a given amount of laser energy than does two-plane Rayleigh scattering. In fact,
for these experiments only a single frequency-doubled Nd:YAG laser is required.
Propane was chosen as the jet fluid because its high index of refraction results in
a Rayleigh scattering cross-section over 13 times that of air (Bartels et al. 1962;
Eckbreth 1988). For the LIF, acetone is seeded into the jet fluid to approximately 5%
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Figure 2. Scalar concentration fields measured by (a) PLIF and (b) Rayleigh scattering, from
the set labeled f2 in table 1. The data planes are parallel and separated by 200 µm. The mean
flow direction is upward in the images. The outer-scale Reynolds number, Reδ , evolves from
6570 to 7800 in the measurement plane.

by volume. The 532 nm output of the laser is split so that 75% is used for the Rayleigh
scattering, while the remainder is further frequency-doubled to 266 nm to excite the
acetone LIF. The resulting laser sheet energies are typically 240 mJ/pulse at 532 nm
and 30 mJ/pulse at 266 nm. To capture the signals, two slow-scan, thermoelectrically
cooled CCD cameras, with 500 × 500 pixel resolution, are used. Optical filters ensure
separation of the LIF signal (which peaks in the range 400–500 nm) from the Rayleigh
scattering signal at 532 nm.

To obtain the scalar concentrations from the raw imaging signals, the acetone PLIF
and Rayleigh scattering images are first filtered and binned by a factor of two to
reduce noise, then mapped to the same imaging area and pixel resolution. Finally,
standard background and laser sheet intensity profile corrections are performed, along
with corrections for camera response non-uniformity and laser beam attenuation. For
additional accuracy, the intensity profiles for the two laser sheets are captured for
individual pulses rather than on an average basis. The resulting processed data
planes span a 220 × 220 pixel grid, and cover a measurement window in the flow of
33.5 × 33.5 mm, giving a grid resolution of 152 µm. Figure 2 shows a sample scalar
concentration field pair obtained by this simultaneous PLIF/Rayleigh scattering
technique. The fields are taken from the set f2, for which the outer-scale Reynolds
number ranges from 6570 to 7800. The location of the imaging region for this set
relative to the mean jet evolution was shown in figure 1.

2.3. Spatial resolution and gradient determination

The objective of this study is to investigate the gradients of the scalar field, so high
spatial resolution of the measurements is essential. The in-plane grid spacing was
given above as �x = �y = 152 µm. For all of these three-dimensional measurements,
the two laser sheets are separated by �z = 200 µm. These resolution parameters
should be compared with the estimated finest dissipation length scale, λD , defined
in (1.8). Here we compute λD using ΛD = 11.2 (Buch & Dahm 1998), and with
the outer-scale parameters δ and Reδ determined as described in § 2.1. The Schmidt
number is found using the binary diffusivity of propane and air at 1 atm and 300 K,
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D = 0.114 cm2 s−1 (Reid, Prausnitz & Poling 1987) and the kinematic viscosity of
air at the same conditions, ν = 0.155 cm2 s−1, giving Sc = 1.36. Because δ ∝ y and
Reδ ∝ y1/2, λD increases downstream of the jet exit, as y5/8. Table 1 lists the minimum
and maximum values of λD for the individual data sets. Over the full set of data, λD

has a minimum value of 360 µm and a maximum value of 720 µm, with an average
of 〈λD〉 = 510 µm.

Normalizing the physical resolution parameters with λD , the in-plane grid resolution
�x/λD (= �y/λD) ranges from 0.21 to 0.42, averaging 〈�x/λD〉 = 0.30 over the full
set of data, while the inter-plane spacing �z/λD ranges from 0.28 to 0.56, with
〈�z/λD〉 = 0.40. The Nyquist condition for critical resolution requires two data
points for each characteristic length, i.e. �xi/λD � 0.5. Thus the data are fully
resolved in the in-plane, x- and y-directions. In the out-of-plane, z-direction, the data
are fully resolved except in limited portions of the imaging regions for the data sets
q1, q1a, r1, r1a, s1, w1, x1 and y1, amounting to 179 of the 906 data volumes in the
full set of present data. Any under-resolution is slight, as �z/λD exceeds the Nyquist
value by no more than 12%.

It should be pointed out that the in-plane spatial resolution of the present
measurements depends also on the resolution of the imaging cameras and camera
optics, while the out-of-plane resolution depends also on the laser sheet thicknesses.
Using a standard resolution target, it was found that the camera and optics used to
collect the Rayleigh scattering signal had a true resolution equal to the grid spacing
of 152 µm, while the true resolution of the PLIF camera and optics was only slightly
worse, at 160 µm. The grid spacing �x = �y = 152 µm is thus an accurate measure
of the true in-plane resolution of the data. On the other hand, the minimum thickness
of the 532 nm laser sheet was measured as 180 µm, while the minimum thickness of
the 266 nm laser sheet was 200 µm, so the inter-plane spacing �z = 200 µm accurately
represents the true out-of-plane resolution.

In measuring the three components, ∂C/∂xi , of the scalar gradient vector, the
out-of-plane component (here, ∂C/∂z) will be subject to the highest uncertainties,
owing to the need to perform the difference calculation across distinct planes, which
were obtained by different techniques and processed independently. The acetone PLIF
and Rayleigh scattering signals are used as independendent measures of the jet fluid
concentration in the separate spatial planes, so accurate determination of ∂C/∂z

requires that the propane and acetone in the jet fluid do not diffuse differentially
into the ambient air, and that the data reduction is consistent for the two diagnostic
techniques. Despite the difference in molecular weight between propane and acetone
(44.10 vs. 58.08), their diffusivities in air are roughly equal, at 0.114 cm2 s−1 for
propane, and 0.104 cm2 s−1 for acetone, at 300 K and 1 atm (Reid et al. 1987). To
verify that the measurement of ∂C/∂z is not compromised by differential diffusion or
data reduction errors, Su & Clemens (1999) applied the simultaneous PLIF/Rayleigh
scattering technique in a single spatial plane, for which the scalar fields measured
in the two imaging planes should be identical. Deviations from this were used to
estimate the errors in the measurement of ∂C/∂z from the three-dimensional data.
No systematic errors due either to differential diffusion or processing discrepancies
were detected. Rather, errors in ∂C/∂z were found to be randomly distributed, with
root-mean-square magnitudes on the order of 10% of the significant features in the
∂C/∂x and ∂C/∂y fields.

An interesting contrast arises between the present gas-phase measurements and
prior measurements of the three-dimensional scalar gradient vector (Prasad &
Sreenivasan 1990; Dahm et al. 1990; Southerland & Dahm 1994), which were
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performed in water. From (1.8), at a given Reynolds number, the scale separation
between the outer scale and the scalar dissipation scale, δ/λD , varies as Sc1/2. For
water, Sc ≈ 2000, so the scale separation in water flows is nearly 40 times larger than
that in the present measurements, where Sc = 1.36. As a result, resolving λD in water
flows typically requires planar imaging windows with side dimensions much smaller
than the local outer scale, δ. For measurements in water flows, then, resolving λD

confines the range of length scales to the high-wavenumber dissipation range. The
present measurements, however, resolve λD even though the width of the imaging
windows is comparable to the outer scale, δ. The windows span 33.5 jet slot widths, h,
while δ has a maximum value of 50h (from table 1 and (2.3)), so the imaging windows
here span a minimum of 0.67δ. This wide span of the imaging windows, relative to
the jet outer scale, is evident in figure 1. The present data thus permit analysis of
scalar power spectra from the dissipation scales nearly to the integral scale, and also
allow direct assessment of, for example, scale-similarity concepts for scalar and scalar
dissipation rate fields, and subgrid models for scalar quantities in LES (§ 5).

2.3.1. Determination of the Kolmogorov scale

By applying previous results for the kinetic energy dissipation rate, ε, it is possible
to estimate the Kolmogorov scale, η, for the present data using (1.2). Antonia,
Satyaprakash & Hussain (1980) measured ε on the centrelines of planar turbulent
jets, and established the following scaling in terms of the jet exit velocity, U0, and the
downstream coordinate, y:

ε ≈ 1.3
U 3

0

h

(y

h

)−5/2

, (2.6)

where h is the jet nozzle width. To express this scaling in terms of local outer-scale
variables, we use the relations (2.2) and (2.3) for the jet centreline velocity Uc and jet
full width δ = δ0.05 for the planar jet. Equation (2.6) then gives ε ≈ 0.019 (U 3

c /δ), and
applying this in (1.2), we obtain

η ≈ 2.7 δ Re−3/4
δ (2.7)

defining Reδ in terms of Uc and δ. The estimated η for the planar jet is thus 0.28
times the value of λD estimated using Λ = 11.2, for the present Sc = 1.36. In § 2.3, the
average λD for the full data set using Λ = 11.2 was given as 510 µm, so the average η

is 143 µm. Normalized by η, the average in-plane grid spacing is 〈�x/η〉 = 1.07, and
the average inter-plane spacing is 〈�z/η〉 = 1.40. The Batchelor scale, ηB , is given by
ηB ≡ η Sc−1/2, and with Sc = 1.36, ηB is 0.24 times λD , averaging 122 µm for the full
data set.

3. Statistical results
3.1. Spectral analysis

Spectral theories for turbulent velocity fields have direct analogues in turbulent scalar
fields, as explored in numerous studies (Obukhov 1949; Corrsin 1951; Batchelor 1959;
Batchelor et al. 1959; Gibson & Schwartz 1963; Gibson 1968). For Schmidt numbers
around unity (D ≈ ν), as in the present measurements, the power spectrum of scalar
fluctuations (here, E(k)) should have a similar form to the spectrum of velocity
fluctuations. In particular, for sufficiently high Reynolds numbers, one expects there
to be an inertial range of wavenumbers k for which the scalar spectrum has a k−5/3
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Figure 3. Averaged scalar power spectra for the present data, computed along data rows (i.e.
fixed downstream position). (a) The Kolmogorov-normalized spectrum. The symbols are the
data of Clay (1973) for temperature fluctuations in a heated turbulent air jet. (b) The spectrum
normalized by outer-scale variables. Also shown on the plots is the expected inertial-range
scaling k−5/3.

dependence. For higher k, E(k) falls off more rapidly as the ‘energy’ of the scalar
fluctuations is dissipated.

In this section, one-dimensional scalar power spectra are computed for individual
data rows, corresponding to fixed downstream positions in the jet. The data rows
span a minimum of 0.67δ, and the measurement grid resolves the estimated λD , so
the resulting spectra should encompass the dissipation range nearly up to the energy
input range. We will be concerned here only with establishing the wavenumber
dependence of the scalar spectrum. More quantitative analysis is compromised by
certain characteristics of the data. Each data set contains at most 30 individual
volumes, so the mean scalar fields for each set used to compute the scalar fluctuation
fields are not fully converged. This limits the accuracy of the low-wavenumber portion
of the spectrum in particular. This effect is countered by filtering the average scalar
profile for each data row, using a top-hat filter with a radius of 20 grid points, prior
to the determination of the scalar fluctuation values. Another property of the data
that affects the quantitative interpretation of the scalar spectrum is that the highest
resolved wavenumbers represent the expected characteristic dissipation length scales
(§ 2.3). The use of finite-length data records (here, 220 points per record) inevitably
corrupts numerically this range of wavenumbers. To mitigate this effect, a Welch
window is applied to the data prior to the spectrum calculation.

Scalar power spectra for the full set of data, compiled by averaging the one-
dimensional power spectra for fixed downstream positions y (individual data rows), are
presented in figure 3. The spectra are computed for the normalized scalar fluctuations
C ′(x, y) = (C(x, y) − C(x, y))/Cmax(y), where the mean fields, C, are determined for
each data set, and Cmax(y) is the local mean centreline value. With this normalization,
the magnitude of the resulting spectrum for each row is effectively independent of
downstream position. Because the relatively limited number of data volumes available
compromises convergence and accuracy of E(k) for low k, the averaged E(k) shown
do not include the three points at the low-k end of the spectrum for each data row.

In figure 3(a), the spectrum is presented in Kolmogorov-normalized form, with k

made non-dimensional with η (as kη = k η, with the local η found as described in
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§ 2.3.1), and E(k) normalized as Eη = E/(Σ2
η η), where Ση is the Kolmogorov scalar

scale, defined (Gibson 1968) as

Ση =
[
〈χ〉(ν/ε)1/2

]1/2
=

〈χ〉1/2η

ν1/2
. (3.1)

Here 〈χ〉 is the average dissipation value for each row, determined for each data
set. In figure 3(b), the spectrum is shown normalized by outer-scale variables, with
k normalized by the jet width, as kδ = k δ, and E normalized as Eδ = E/δ. The
moderate Reynolds number of the present data is manifested here in the limited k

extent of the spectrum (roughly two decades). Despite the moderate Reynolds number,
there is evidence in the plots of an inertial range with the expected k−5/3 power-law
dependence of E(k). A least-squares fit to the Kolmogorov-normalized data (in the
logarithmic axes) for kη < 0.2 gives a slope m = −1.623. A least-squares fit to the
δ-normalized data for kδ < 50 gives a slope m = −1.627.

The symbols in the Kolmogorov-normalized plot (figure 3a) are from Clay (1973),
and represent the power spectrum of temperature fluctuations in a heated round air jet
at a jet exit Reynolds number of 100 000. The scalar in that case being temperature,
the relevant Schmidt number is the Prandtl number, where Pr = 0.7 in air. The
spectrum of Clay is determined from time series data for temperature on the jet axis,
and is converted to wavenumber units by Taylor’s hypothesis. The spectrum for the
present data is slightly displaced vertically from that of Clay in the presumed inertial
range, which is probably due to details of the normalization of Eη. Specifically, in the
determination of Ση (equation (3.1)), the present data use a spatial average for 〈χ〉,
while Clay employed an ensemble average at the measurement location to determine
〈χ〉. The present 〈χ〉 will thus be biased downward by low χ values at the edges of
the jet, for example, which would be consistent with the slight overestimation of Eη in
comparison with Clay’s data. In the dissipation range, the data for the two Schmidt
numbers are not expected to collapse in the Kolmogorov normalization; instead, the
appropriate normalizing length scale is the Batchelor scale, ηB ≡ η Sc−1/2 (Gibson
1968). In figure 3(a), then, the present spectrum should be displaced from that of Clay
in the dissipation range by log10(Sc/Pr)1/2 = log10(1.36/0.7)1/2 = 0.14 decades in the
logarithmic axes. The actual horizontal displacement of the two spectra at Eη = 0.1
is ≈ 0.16 decades, so the discrepancy between two spectra in the dissipation range is
quite consistent with theory.

The existence of an inertial range in the spectra of figure 3 would suggest that, for
wavenumbers above the dissipation range, the details of the energy input process in
the scalar mixing have become unimportant for the Reynolds numbers considered.
It is surprising that there should be any evidence for an inertial range at the present
modest Reynolds numbers, which fall short of the value of Reδ ≈ 20 000 proposed as
a fully developed turbulence criterion by Dimotakis (2000). However, that criterion
is based on consideration of the so-called mixing transition (Konrad 1976; Roshko
1991; Catrakis & Dimotakis 1996), which assesses the mixing in terms of the spatial
density of unmixed fluid in the flow, and does not make explicit reference to spectral
properties. The present data suggest that the scalar spectra can show an inertial range
at Reynolds numbers below the mixing transition. The evidence for an inertial range
in the present data provides support for the generality, to higher Reynolds numbers,
of the results for the structural properties of small-scale turbulent mixing presented
in this paper.
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Figure 4. Scalar dissipation rate fields for the scalar concentration field of figure 2. (a) The
two-component scalar dissipation rate field, χ2D , determined from the in-plane scalar gradient
components, ∂C/∂x and ∂C/∂y, of the PLIF concentration field. (b) The three-component
field, χ = χ3D . The out-of-plane component, ∂C/∂z, was determined by differencing between
the PLIF and Rayleigh scattering fields.

3.2. Dissipation rate field statistics

Figure 4(a) shows the two-component scalar dissipation rate field, χ2D , determined
from the scalar field data volume of figure 2. The in-plane components, ∂C/∂x and
∂C/∂y, of the scalar gradient vector, ∇C, were computed using central differences
around each grid point in the PLIF data plane. Figure 4(b) shows the full three-
component dissipation rate field, χ = χ3D , for the same data volume. The out-of-
plane component, ∂C/∂z, of ∇C was computed by a two-point difference between the
PLIF and Rayleigh scattering data planes. From figure 4 it is clear that structures
in these planar measurements of χ are characteristically thin, with lengths well in
excess of their thicknesses, corresponding to lamellar or layer-like structures in three
dimensions. The tendency of the scalar dissipation rate field to be organized in layers
has been noted previously in, for example, the experiments of Buch & Dahm (1996,
1998) and Southerland & Dahm (1994).

Statistics of the scalar dissipation rate field, particularly the form of its probability
density function (PDF), are of interest for quantifying the intermittency of turbulent
mixing. Here as well theories for scalar energy dissipation have been developed by
analogy with kinetic energy dissipation. Obukhov (1962) and Kolmogorov (1962)
hypothesized that kinetic energy dissipation followed a log–normal distribution.
Subsequently, Gurvich & Yaglom (1967) extended this log–normal hypothesis to
scalar energy dissipation. The form of the PDF of χ is fundamental to simulations of
non-premixed turbulent reacting flows. In large-eddy simulations, dissipation generally
occurs on the subgrid scales and is subject to modelling. The assumption of log–
normality of the PDF of χ is commonly used in LES of combustion (e.g. Bushe &
Steiner 1999).

Dahm & Buch (1989) presented results for the χ PDF based on the single-
component scalar gradient measurements of Dowling & Dimotakis (1990) in gas-
phase turbulent jets. The PDF of the three-component dissipation rate, χ , was
determined from the single-component measurements χ1D by assuming isotropy of the



14 L. K. Su and N. T. Clemens

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
–5

(a)

log10 [χ/(〈C 〉/λD)2]

P
ro

ba
bi

li
ty

 d
en

si
ty

Data

Gaussian

–4 –3 –2 –1 0 1

100

10–1

10–2

10–3

10–4

–5

(b)

log10 [χ/(〈C 〉/λD)2]

–4 –3 –2 –1 0 1

Figure 5. The PDF of the logarithm of the scalar dissipation rate, χ , with (a) linear and
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moments. The mean value of χ is indicated. The χ distribution shows a small negative
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scalar gradient. Buch & Dahm (1996, 1998) applied a similar procedure to determine
the χ PDF from measurements of the two-dimensional dissipation rate, χ2D , in both
gas- and liquid-phase jets. The χ PDFs for the gas-phase data, estimated from the
measurements of both χ1D and χ2D , were found to be very nearly log–normal. For
the liquid-phase data, Buch & Dahm (1996) found slight but noticeable departures
from log–normality in the χ PDF. In particular, the data show a slight negative
skewness (third moment). Subsequent to these experiments, Southerland & Dahm
(1994) performed direct measurements of the three-component χ in a liquid-phase
jet, and also found small departures from log–normality of the χ PDF, manifested in
negative skewness.

Figure 5 shows the PDF of the logarithm of χ for the present three-dimensional
measurements, with both linear and logarithmic y-axis. Scalar values are normalized
by the mean scalar concentration, 〈C〉; the grid spacings �xi used in the finite
differencing are normalized by the estimated dissipation scale, λD , found using (1.8)
and with Λ = 11.2 as recommended by Buch & Dahm (1998). Also shown in the figure
is a Gaussian distribution having the same first two moments. The χ distribution is
evidently nearly log–normal, though, as with the liquid-phase data of Buch & Dahm
(1996) and Southerland & Dahm (1994), departures from the Gaussian curve come
in the form of small negative skewness. The negative skewness is more evident in
figure 5(b).

If one assumes that the log–normal distribution is the true form of the turbulent χ

PDF, possible explanations for the departure from log–normality in figure 5 include
the presence of the jet outer boundary in some of the images (where the presence
of unmixed ambient air increases the population of low χ values), the moderate
Reynolds number of the data, and the effects of finite resolution and measurement
noise. To illustrate the first of these points, observe (from table 1 and using (2.3))
that for the most-upstream data row in set n1, the jet width is δ = 25.4 h, so that
row spans −0.59 < x/δ < 0.75. Since δ is the jet full width, this means that the data
row encompasses regions where the jet fluid concentration C, and χ , are expected
generally to be near zero. To minimize this effect in the χ PDF, figure 6 shows the χ

PDF conditioned on |x/δ| � 0.28, compared with the full χ PDF from figure 5. The
|x/δ| � 0.28 limit is the largest symmetric interval covered by all of the data rows.
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Conditioning the χ distribution clearly increases the agreement with the log–normal
distribution.

The moderate Reynolds number of the data might also explain the departure
from log–normality of the χ PDF, as the equilibrium hypotheses for high Reynolds
numbers would be less valid. Additionally, at higher Reynolds number, the flow would
be more likely to have begun (or undergone) the mixing transition, after which there
would be a sharp reduction in the spatial density of unmixed fluid with χ near zero.
Thus the moderate Reynolds number of the data might affect the χ PDF similarly to
the inclusion of the jet outer boundary in the measurements. To assess the Reynolds
number effect on the χ distribution, figure 6 also shows the χ PDF conditioned
on both |x/δ| � 0.28 and local Reδ � 7000. Compared with the conditioning on
|x/δ| � 0.28 alone, the additional Reδ conditioning appears to reduce slightly the
probability of low χ values. At the same time, the Reδ-conditioned PDF drops off
more steeply at high χ values, similarly to the log–normal distribution.

The pronounced skewness of the PDF remains, however, even conditioning on high
Reδ . It is possible that the observed preponderance of low χ values is due to well-
mixed, rather than nearly-unmixed, fluid, and that the departure from log–normality
is the true form of the χ PDF for high Reδ . This may be Schmidt-number dependent.
Indeed, in the present gas-phase scalar mixing images, unmixed fluid regions are far
less evident than in the liquid-phase measurements of Buch & Dahm (1996) and
Southerland & Dahm (1994). Dimotakis (2000) also noted that gas-phase flows show
more homogeneous scalar fields than liquid-phase flows at similar Reynolds numbers.

Another possibility is that the skewness might be an experimental artifact, and
arises from either measurement noise or inadequate spatial resolution. We would,
a priori, expect that noise can be ruled out as a possible explanation, since noise would
tend to cause an under-population of the low values in the χ PDF, counter to the
negative skewness observed in figures 5 and 6. Figure 7(a) shows the distributions of
χ computed both for the raw data, and for the data as contaminated by synthetically
generated random noise. The noise followed a Gaussian distribution, with variance
equal to 0.02 times the average scalar value, 〈C〉. It is clear from figure 7(a) that the
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Figure 7. The effects of measurement noise and spatial resolution on the PDFs of the scalar
dissipation rate, conditioned on |x/δ| � 0.28. (a) PDFs of the logarithm of χ for the raw data,
and for the data as contaminated with synthetic random noise. (b) PDFs of the logarithm of
χ2D for the raw data, for the raw data using the rotated differencing stencil, and for the data
after 2 × 2 and 4 × 4 box filtering.

effect of noise is to introduce a positive skewness bias, confirming that measurement
noise is not the cause of the observed negative skewness of the χ PDF.

However, inadequate resolution of scalar gradients by the imaging system could
lead to over-representation of low χ values and under-representation of high χ

values in the χ PDF. To see if resolution effects might explain the full quantitative
discrepancy between the measured χ distributions and the log–normal curve, the
distributions of the two-dimensional scalar dissipation rate, χ2D , were computed for
the data at different levels of deliberately reduced resolution. This resolution test
used χ2D , computed using the ∂C/∂x and ∂C/∂y components of the scalar gradient
vector, rather than the full three-dimensional χ , because there are only two data
planes in the z-direction and thus the resolution of the ∂C/∂z component cannot
be artificially reduced. Recognizing that the grid-centred central difference operator
implicitly filters the data to some degree, χ2D was also computed using a differencing
stencil rotated by 45◦. That is, given a point (i, j ) in the data plane, one component
of χ2D is found by differencing between the points (i, j ) and (i − 1, j − 1), and the
other is found by differencing between the points (i − 1, j ) and (i, j − 1). Computing
χ2D in this way also represents a central difference, in this case around the off-grid
point (i − 1/2, j − 1/2), though the effective grid spacing is smaller by a factor of

√
2

compared with grid-centred central differencing. Figure 7(b) shows the χ2D PDFs for
the original, 220×220 data planes, the 110×110 planes resulting after 2×2 box filtering
of the data, and the 55×55 planes resulting from 4×4 box filtering, all found through
grid-centred central differencing, and the χ2D PDF for the raw data found using the
rotated differencing stencil. All of the PDFs are conditioned on |x/δ| � 0.28. While
the data with artificially reduced resolution show higher skewness than the unfiltered
data, the discrepancy is small. At the low-χ2D end of the distribution in figure 7(b),
each factor of two reduction in resolution raises the probability density by roughly
a factor of two. Comparing the χ2D distributions for the unfiltered data using the
grid-centred and rotated differencing stencils, the filtering effect of the grid-centred
central difference operator is slight, and is in fact smaller than the effect of the 2 × 2
box filter. (Grid-centred central differencing is used for the remainder of the present
work, because the computed ∂C/∂x and ∂C/∂y components can then be associated
with the same spatial points as the computed ∂C/∂z; this condition does not hold for
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the rotated differencing stencil.) From the results of figure 7(b), it appears unlikely
that the departure from log–normality of the scalar dissipation rate distribution seen
in figures 5 and 6 can be fully explained by deficient resolution. It instead appears
that a slight negative skewness is a property of the scalar dissipation rate PDF.

4. Dissipation length scales
In a turbulent shear flow, the thickness of the dissipation layers will scale with

the local outer-scale Reynolds number, Reδ . The form of this Reδ dependence was
explored in § 1.1. In this section, we investigate the dependence by direct measurement
of the thicknesses of the layers. We will also be able to determine the proper value of
the proportionality constant in the scaling relation.

Figure 8 shows the dissipation layer centres for the three-component scalar
dissipation rate field of figure 4(b). This layer centre field was compiled by first
identifying peaks in the dissipation field. A given point was determined to be a
‘peak’ if the local dissipation rate both exceeded a given threshold and represented
the local maximum value in both the positive and negative in-plane scalar gradient
vector directions. A connectivity condition was then imposed on the peak field to
remove noise effects. For figure 8, the threshold value was that which captures 75%
of the total dissipation for the full data set (namely, non-dimensional χ = 0.058).
The connectivity condition required that the dissipation structures span a minimum
length of twice the estimated value of λD , determined from (1.8) and using Λ = 11.2.

Determination of the layer centre fields represents the first step in the measurement
of the layer thicknesses. We define the local layer thickness for a given point on a
dissipation layer, λloc, as the full width of the layer, where this width is computed
as the distance across the layer between those points where the dissipation rate is
20% of the maximum. For each of the points in the layer centre fields, a search
is performed in the in-plane scalar gradient direction (both positive and negative)
until the dissipation value drops below 20% of the maximum. The exact point at
which the dissipation is 20% of the maximum value is approximated through linear
interpolation between the last two points in the search. The resulting layer half-width
values are then doubled to give a measure of the full width, λloc. For those layers where
the dissipation rate fails to drop monotonically, indicating a possible intersection of
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Figure 10. The probability distribution of the local scalar dissipation layer thickness, λloc ,
for the full set of present data.

layers, statistics are not compiled. Finally, because the dissipation rate images, and
thus the thickness computations, are strictly two-dimensional, the resulting thicknesses
are adjusted to account for three-dimensionality, by using the known orientation of
the three-dimensional scalar gradient vector, ∇C. Figure 9 illustrates this correction
for the idealized case of a planar dissipation layer, in which the scalar concentration
varies only in the layer-normal direction. The true value of λloc is found from λloc,2D ,
the value determined using the two-dimensional algorithm, as

λloc = λloc,2D cos φ, (4.1)

where φ is the out-of-plane angle of ∇C. This correction becomes less reliable as
the dissipation layer becomes more closely aligned with the imaging plane, i.e. as φ

increases. The effects of layer curvature, and of non-zero scalar gradients in the layer-
parallel directions, may then become significant. For this reason, only dissipation
maxima where φ � 60◦ were considered.

Figure 10 shows the raw dissipation layer thicknesses for the full set of data. The
threshold value of the dissipation rate, χ , and the connectivity condition used in
the layer definition are the same as applied in figure 8. The peak of the thickness
distribution in figure 10 lies at just under 600 µm, while the thinnest layers in the
distribution are just under 200 µm thick, and the thickest layers just over 1600 µm
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thick. Recalling that the in-plane grid spacing of the data is �x = 152 µm, the
peak of the thickness distribution lies at approximately 4 �x; the thinnest layers,
on the other hand, measure roughly 1.3 �x, and the thickest layers measure roughly
10.5 �x. Interestingly, the in-plane grid spacing, �x, places a lower bound only on
the two-dimensional layer thickness, λloc,2D , that can be resolved. Because λloc �
λloc,2D (equation (4.1)), figure 9 illustrates that, with the present three-dimensional
measurements, the ability to resolve the true, three-dimensional layer thickness is in
principle better than would be implied by the in-plane grid spacing alone. In the light
of this, and since the thicknesses of smallest layers in the distribution of figure 10
exceed �x, it appears that the measurement of λloc is not noticeably compromised by
the in-plane measurement resolution.

As mentioned earlier, at issue in the computation of layer thicknesses are the proper
Reδ scaling of the characteristic scalar dissipation scale, λD , and the proper value of
the coefficient in the scaling relation for λD . We will define λD here as the average
of the local dissipation layer full widths, λloc. This definition of λD is consistent with
that of Buch & Dahm (1998). To isolate the dependence of λD on Reδ , the local
outer-scale Reynolds number, we will assume that the δ and Sc dependence in (1.8)
is correct, and consider the quantity λD/(δ Sc−1/2).

Figure 11 shows λD/(δ Sc−1/2) as a function of Reδ , in log–log axes. Again, as
with figures 8 and 10, the threshold value of χ is chosen to capture 75% of the
total dissipation, and the layers are required to have a minimum length of twice the
estimated λD . The curve is generated by first dividing the Reynolds number range
3200 to 8400 into 26 bins, then finding the average value of λloc/(δ Sc−1/2) in each
bin. The least-squares linear fit to the data in these log–log axes has a power law
dependence Re−0.74

δ . The dashed line in the plot is the curve 14.5Re−3/4
δ , where the

coefficient is found by a least-squares fit to an imposed Re−3/4
δ dependence. From

this plot it is evident that the average dissipation layer thicknesses follow the Re−3/4
δ

Batchelor/Kolmogorov scaling given in (1.8).
Dowling (1991) suggested (§ 1.1) that while the majority of the dissipation occurred

at scales that followed Batchelor/Kolmogorov scaling, a substantial portion of the
dissipation, in particular the highest local dissipation values, occurred at the larger
Taylor scale, with a Re−1/2

δ dependence. If true, thicker layers should be measured
if the threshold value of the dissipation rate is increased. Table 2 shows the results
from the determination of layer thicknesses for different threshold values of χ . The
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χmin % tot. diss. Λ

0.006 99 14.6
0.026 90 14.6
0.058 75 14.5
0.078 67 14.5
0.142 50 14.2
0.342 25 13.4

Table 2. Dependence of layer thicknesses on the threshold value of the scalar dissipation rate,
χ . Only layers with peak χ exceeding χmin are used in compiling the thickness statistics. The
percentages of the total scalar dissipation captured with these χmin are given in the second
column in the table. The value of the coefficient Λ is found by a least-squares fit to the average
thickness vs. Reδ data (as shown in figure 11), where a dependence of Re

−3/4
δ is imposed.

Re
δ

0.05

4000 5000 6000 7000 8000

0.04

0.03

0.02

0.01

λ
D

/(
δ

Sc
–1

/2
)

Thinnest 25%

All layers

Thickest 25%

Figure 12. Dissipation layer thickness conditioned on the local Reδ . Shown are the average
thicknesses of the thickest 25% of layers, the thinnest 25% of layers, and all layers.

results are presented in terms of the value of the scaling coefficient Λ in (1.8). These
Λ are determined (as in figure 11) by finding the least-squares fit of Re−3/4

δ curves
to the data for λD/(δ Sc−1/2) vs. Reδ , where the λD are the average dissipation layer
thicknesses. As seen in the table, higher threshold values of χ result in thinner layers
(smaller Λ), arguing against a greater importance of the larger Taylor scale for higher
dissipation rates.

The possible contribution of Taylor scaling to the dissipation can also be assessed
by considering the Reδ dependence of the extremes of the layer thickness distribution.
Figure 12 shows the Reδ dependence of the average thickness of the thickest and
thinnest 25% of layers. These curves are compiled by determining the average value
for the upper and lower 25% of the λloc/(δ Sc−1/2) distribution in each Reδ bin. Also
shown in the figure is the overall average shown in figure 11. There is essentially no
evidence in these curves of any Re−1/2

δ scaling of the thickest layers. The least-squares
fit to the λD/(δ Sc−1/2) curve for the thickest 25% of layers has dependence Re−0.73

δ ,
while the fit to the curve for the thinnest 25% has dependence Re−0.75

δ . The trend
of weaker Reδ dependence (smaller magnitude of the exponent) for thicker layers is
consistent with Dowling’s hypothesis, but this difference of −0.73 and −0.75 in the
exponent is within experimental tolerances, and gives no indication of Re−1/2

δ scaling.
It should be pointed out that at moderate Reynolds numbers such as those of the

present study, the Taylor scale might become of the same order as, or smaller than,
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the Re−3/4
δ -dependent dissipative scales. To estimate λT , we write the kinetic energy

dissipation rate as ε = 15 νu2/λ2
T (Tennekes & Lumley 1972), assuming local isotropy,

where u is the r.m.s. fluctuation of each component of velocity. We can cast this in
terms of the centreline mean velocity, Uc, using the approximation u/Uc ≈ 0.2 from
the measurements of Everitt & Robins (1978) in a planar turbulent jet. This gives
ε = 0.6 ν U 2

c /λT , while in § 2.3.1, we wrote the dissipation rate in terms of outer-scale
variables as ε ≈ 0.019 (U 3

c /δ). Combining these expressions for ε gives

λT

δ
= 5.6 Re−1/2

δ . (4.2)

Comparing this with the expression for the Kolmogorov scale, η, in (2.7), we find

λT

η
= 2.1 Re1/4

δ , (4.3)

and for Reδ between 3290 and 8330 for the present data, this means that λT /η is
between roughly 16 and 20. When the appropriate scaling coefficients are applied to
relate η to the true dissipative scales λD and λν , and to relate λT to a presumed true
‘Taylor’ scale, we cannot rule out the possibility that the resulting true Taylor scale
might be smaller than the Re−3/4

δ -dependent dissipative scales. Even admitting this

possibility, however, there is no indication in the data that Re−1/2
δ scaling is significant

in the scalar energy dissipation process. This can be seen in figure 12, where the
thinnest dissipation layers also follow Re−3/4

δ scaling.

4.1. Universality of the scaling coefficient

Besides confirming the Re−3/4
δ scaling of the dissipation layer thickness, λD , the present

measurements also provide an estimate of the proper scaling coefficient, Λ, in the
thickness expression (1.8). The appropriate relation is

λD = 14.5 δ Re−3/4
δ Sc−1/2, (4.4)

where Λ = 14.5 is found from figure 11.
In the preparation of these experiments, the value Λ = 11.2 was used in estimating

the resolution requirements for measuring the scalar gradient components ∂C/∂xi .
This value of Λ was found through measurements of conserved scalar mixing in an
axisymmetric co-flowing turbulent jet, at an outer-scale Reynolds number of 11 000
(Buch & Dahm 1998). In applying this Λ here, its value was interpreted as being
general to different shear flows. For the present planar turbulent jet, we assumed that
by defining the outer-scales similarly to Buch & Dahm in (1.8) (using the local jet
centreline velocity as the velocity scale, U , and using the full width of the jet velocity
profile at 5% of the centreline value as the flow width, δ), the value Λ = 11.2 gave
the proper value of λD .

Recently, Tsurikov & Clemens (2002) measured a value Λ = 7.8 in the same
axisymmetric co-flowing jet flow geometry used by Buch & Dahm (1998), at Reδ =
8700. The experiment of Tsurikov & Clemens was designed to achieve very high
spatial resolution, so those authors concluded that the discrepancy between their
measured value of Λ and that of Buch & Dahm is due to finite resolution effects in
the earlier study. However, the value Λ = 7.8 measured by Tsurikov & Clemens is
smaller than the value Λ = 14.5 measured here in a planar turbulent jet by a factor of
1.86. Before examining whether this difference can be solely explained by resolution
effects, we consider another possibility, namely that the difference in Λ might partly
be attributable to the different flow geometries considered.
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In particular, the quantitative manner in which the outer-flow scales establish the
turbulent fine scales appears not to be universally described using U and δ for
different flows. The proper Λ to be applied in (1.8) thus seems to be flow-dependent.
To illustrate this, we can consider how the Kolmogorov scale, η (or the Batchelor
scale, ηB), relates to the outer-scale variables for different flows. The relation for
planar jets was found in § 2.3.1 to be η ≈ 2.7 δ Re−3/4

δ for the present jet-to-ambient
fluid density ratio of 1.54. Repeating the same analysis for axisymmetric jets, we begin
with the following relation for the kinetic energy dissipation rate on the centrelines
of axisymmetric turbulent jets, also measured by Antonia et al. (1980):

ε ≈ 48
U 3

0

d

(y

d

)−4

, (4.5)

with U0 being the jet exit velocity, d the jet nozzle diameter and y the downstream
coordinate. Using the relations Uc = 6.2 (ρ0/ρ∞)1/2 U0(y/d)−1 for the jet centreline
velocity, and δ = δ0.05 = 0.37 y for the jet full width (Chen & Rodi 1980), and using
ρ0/ρ∞ = 1.54 as for the present data, (4.5) gives ε ≈ 0.039 (U 3

c /δ). Applied in (1.2),
defining Reδ as before in terms of Uc and δ, this gives

η ≈ 2.3 δ Re−3/4
δ . (4.6)

Equations (2.7) and (4.6) demonstrate that even when the outer-scale parameters of
planar and axisymmetric jets are matched, the Kolmogorov and Batchelor scales will
be larger in the planar jet by a factor of roughly 1.2. (Comparing (2.7) and (4.4), and
using Sc = 1.36, the average dissipation layer thickness, λD , found from the present
data is approximately 4.6 times the Kolmogorov scale, and 5.4 times the Batchelor
scale.)

This result shows that it is impossible for the dissipation length scales, λν and λD ,
to be universally related to both the outer-scale parameters and the Kolmogorov/
Batchelor scales. That is, the constants Λ and ΛK appearing in (1.7) and (1.8) cannot
both be universal and flow-independent. Because the Kolmogorov/Batchelor scales
η and ηB are defined strictly in terms of quantities that are relevant at the small
scales, and thus are independent of the details of the outer-flow scaling, we expect
that ΛK , which relates λν and λD to η and ηB , is universal. If this is true, then by
(2.7) and (4.6), the appropriate Λ in (1.8) will be higher in planar jets by a factor of
1.2. This partially accounts for the discrepancy between the Λ = 14.5 found in these
planar jet measurements and the Λ = 7.8 found in axisymmetric jets by Tsurikov &
Clemens (2002), reducing the original factor of 1.86 discrepancy to a factor of 1.55.
(Interestingly, this factor of 1.2 almost entirely accounts for the discrepancy between
the Λ = 14.5 found here and the Λ = 11.2 found by Buch & Dahm 1998.)

In § 2.3.1 the in-plane grid spacing of the present data was found to be 〈�x/η〉 =
1.07. In comparison, Tsurikov & Clemens (2002) quote a grid spacing �x/η ≈ 1.0.
Antonia & Mi (1993) investigated explicitly the effect of varied probe spacing on
measurements of temperature dissipation rates, and found that differences of a factor
of 2 in spacing accounted for perhaps a factor of 1.5 difference in the measured
dissipation rates. Since the measured dissipation layer thickness can be expected to
have a weaker dependence on grid spacing than the dissipation rate values themselves,
it is unlikely that the difference in resolution accounts fully for the difference between
the Λ value found here and that found by Tsurikov & Clemens (2002), even after the
difference in flow geometry is taken into account.
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Tsurikov (2002) has also presented scalar mixing results from an axisymmetric, co-
flowing jet at Reδ = 19 000, measuring Λ = 10.6. To explain the discrepancy between
this Λ and the value of 7.8 measured by Tsurikov & Clemens (2002) at Reδ = 8700,
Tsurikov (2002) hypothesized that the value of Λ itself may not be universal over
all Reynolds numbers. In particular, the dissipation length scale λD may be given by
(1.8), but with different values of Λ for different Reynolds number ranges. Higher
values of Λ might be consistent with the greater scalar field homogeneity expected
for Reynolds numbers beyond the mixing transition, for example. If true, the proper
comparison for the value Λ = 11.2 of Buch & Dahm (1998) at Reδ = 11 000 could be
with the value Λ = 10.6 of Tsurikov (2002). While the present measurements show
that λD is described well by (1.8) with a single value of Λ for Reδ from 3290 to 8330,
considerably higher Reynolds numbers would need to be considered to establish the
Reynolds number (non-)universality of Λ.

5. Assessment of subgrid models
As pointed out in § 2.3, the scale separation between the large eddies and the scalar

dissipation structures in a gas-phase turbulent flow is much smaller than the separation
that would pertain in a liquid-phase flow at the same Reynolds number, owing to
the much lower Schmidt numbers of gases. Gas-phase scalar imaging measurements
can, therefore, more easily cover a range of length scales from the dissipation scale
up to the integral scale. In the present measurements, the in-plane grid spacing of the
data volumes is less than 0.5λD , while the imaging planes span > 0.67δ. This range of
scales makes the data suitable for direct assessment of LES subgrid models for scalar
mixing.

Approaches to LES of non-premixed combustion begin by computation of the
mixture fraction. This is represented as a conserved scalar C(x, t), while the filtered
mixture fraction computed directly by LES is written C(x, t), where C = C + C ′. In
general, the LES filtering operation is a density-weighted Favre filtering; however,
because the present data are from a non-reacting incompressible flow, the ( ) operation
will be treated as a simple grid filtering with characteristic filter width �. Non-
premixed combustion models for LES then typically require knowledge of the subgrid
scalar PDF. In the assumed-shape approach, the low-order statistical moments define
the subgrid scalar PDF. Receiving much attention (Cook & Riley 1994; Jiménez
et al. 1997) is the beta distribution, which is specified in each filter volume by the
filtered scalar value, C, which is known from the LES, and the filtered scalar variance,
C

′2, which can be written

C
′2 = C2 − C

2
. (5.1)

The first term on the right-hand side of this equation is not resolved by the LES, so
C

′2 must be modelled.
Here we consider two such models for the subgrid scalar variance. The first is the

scale-similarity model of Cook & Riley (1994). Begin by defining (̂ ) as an additional

‘test’ filter, with width �̂, applied to the grid-filtered LES output. The scale-similarity

model then assumes that C
′2, the grid-filtered variance of C, is proportional to the test-

filtered variance of C. This can then be written in terms of LES-resolved quantities,
as

C
′2 = αS(Ĉ

2 − Ĉ
2

), (5.2)
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where the proportionality constant αS must be prescribed in the simulation. The
second model is the gradient-based eddy-viscosity-type formulation described by
Pierce & Moin (1998), where the subgrid variance is expressed as

C
′2 = αG�

2|∇C|2 (5.3)

with the constant αG typically being found through the dynamic procedure.

5.1. A priori testing

Subgrid scalar variance models such as these can be tested by using spatially resolved
scalar field data, where the C

′2 field can be computed directly. The data are first
filtered to mimic LES data, then (5.2) or (5.3) is applied, with the resulting model
estimate of C

′2 being compared with the exact values. Previous work has generally
used direct numerical simulation (DNS) results for such a priori testing (e.g. Jiménez
et al. 1997; Wall, Boersma & Moin 2000). Experimental scalar field data from liquid-
phase flows have also been used (Cook & Riley 1994, data from Southerland &
Dahm 1994), but the length scales covered by those data did not accurately reflect
LES conditions (§ 2.3).

The models represented by (5.2) and (5.3) can be assessed through the correlation
between the exact and modelled C

′2, or through a comparison of the magnitudes.
Magnitude agreement has a bearing on the values of the proportionality constants
αS and αG. Specification of those constants is primarily a computational matter and
will not be addressed in this paper. Instead we will focus on the structural accuracy
of the models, as manifested through correlations.

The first step in the a priori testing is grid filtering the present experimental data
to simulate LES results. Because the present data span only two planes in the out-
of-plane direction, this grid filtering is limited to two-dimensional kernels. Here we
use only square top-hat kernels. To be consistent with LES, the grid spacing of the
grid-filtered data is the same as the kernel size. That is, while the experimental scalar
field data, C(x), are defined on a 220 × 220 grid, the grid-filtered data, C(x), are
defined on a (220/N ) × (220/N) grid, where N is the side length (in pixels) of the

top-hat kernel. This ensures that C = C, so (5.1) holds.
To test the scale-similarity model of (5.2), we will need to apply a test filter to both

the grid-filtered data C and C
2
. Unlike the grid filtering, the test filtering is performed

‘in place,’ so the test-filtered data Ĉ and Ĉ
2

are defined on the same grid as C. This
would not be done in an actual LES, but here increases the number of points available
for computing statistics. The test filtering here also uses square top-hat kernels, and
is implemented using Simpson’s rule.

To assess the two models we will use the correlation, R2, between the actual subgrid
variance and the variance determined by each model:

R2 =

〈(
C

′2
A −

〈
C

′2
A

〉)(
C

′2
M −

〈
C

′2
M

〉)〉2

〈(
C

′2
A −

〈
C

′2
A

〉)2 〉 〈(
C

′2
M −

〈
C

′2
M

〉)2 〉 , (5.4)

where C
′2
A is the actual subgrid variance at a given point in the grid-filtered domain,

C
′2
M is the model estimate of the subgrid variance, and the brackets 〈·〉 denote averaging

over the full set of data. For the a priori testing, the grid filters used had sizes � = 2, 4,
8, 12, and 16 pixels on the original data grids. In terms of the estimated Kolmogorov
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Figure 13. The joint PDF of the actual subgrid scalar variance, C
′2
A , and the scalar variance

estimated by the scale-similarity model, C
′2
M , with grid filter size � = 8, and with a test filter

spanning two pixels on the grid-filtered data grid. The contour scale is logarithmic, with
adjacent contours representing a magnitude ratio of 5.
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Figure 14. The joint PDF of the actual subgrid scalar variance, C
′2
A , and the scalar variance

estimated by the gradient-based model, C
′2
M , with grid filter size � = 8. The contour scale is

logarithmic, with adjacent contours representing a magnitude ratio of 5.

scale η (equation (2.7)), � ranged from 3η to 23.7η. Figure 13 presents a contour plot

of the joint PDF of C
′2
A and C

′2
M for the scale-similarity model, where the grid filter size

is � = 8 and the test filter spans two pixels on the grid-filtered data grid. Figure 14

shows the joint PDF of C
′2
A and C

′2
M for the gradient-based model, again with grid

filter size � = 8. In comparing these joint distributions, it appears that there is little
to choose between the two models. If either model were to yield a perfect correlation
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� (pixels) 〈�η〉 R2
S R2

G αS αG

2 2.1 0.80 0.84 0.22 0.077
4 4.3 0.62 0.68 0.33 0.12
8 8.6 0.42 0.43 0.48 0.18

12 12.8 0.36 0.34 0.63 0.21
16 17.1 0.34 0.28 0.73 0.22

Table 3. Statistical results from a priori testing of the scale-similarity and gradient-based
models for subgrid scalar variance (equations (5.2) and (5.3), respectively). The � are the grid
filter sizes used. 〈�/η〉 is the average grid filter size normalized by the local value of the
Kolmogorov scale, η. R2

S is the correlation between the true grid filtered variance, C
′2, and the

value estimated by the scale-similarity model. For the scale-similarity model, the test filter in
all cases has a width of two pixels in the grid-filtered domain. R2

S is the correlation between
the true C

′2 and the estimate from the gradient-based model. Also given are the appropriate
values of the proportionality constants αS and αG in (5.2) and (5.3) for each grid filter size.

between the modelled and measured C
′2, then all contours would be confined to a

straight line running through the origin. Neither model approaches this. While the
contours of the joint PDF for the scale-similarity model appear to cover more of the

C
′2
A vs. C

′2
M space, which would suggest a lower correlation between the actual and

modelled variance, the gradient-based model notably overestimates the proportion of
variance values near zero.

Table 3 gives the quantitative results for the a priori testing. For the scale-similarity
model, the smallest possible top-hat test filter, spanning two pixels on the grid-filtered
data grid, was found to give the best results, so only the results using that test filter
are shown in the table. For the scale-similarity model, R2

S has a value of 0.80 for
� = 2, dropping to R2

S = 0.42 for � = 8 and R2
S = 0.34 for � = 16. For the

gradient-based model, R2
G = 0.84 for � = 2, R2

G = 0.43 for � = 8, and R2
G = 0.28 for

� = 16. In terms of this correlation, (5.4), the two models perform similarly, although
the gradient-based model is slightly superior for smaller grid filter sizes, while the
scale-similarity model is slightly superior for larger �. These results suggest that the
scale-similarity model should be preferred for those simulations that take advantage
of the LES formulation by imposing a wide scale separation between the fine scales
and the grid filter scale.

6. Conclusions
Measurements of the three-component scalar gradient field, ∇C, and scalar energy

dissipation rate field, χ ≡ D∇C · ∇C, permit investigation of the structural properties
of fine-scale scalar mixing in gas-phase turbulent flows. The flow considered is a
planar turbulent jet, with outer-scale Reynolds number ranging from 3290 to 8330.
Despite the moderate Reynolds numbers, scalar power spectra for the data show
some evidence of an inertial range of wavenumbers. The data confirm the tendency
of the scalar dissipation rate fields to be organized into lamellar structures. Direct
measurement of the average thicknesses of the dissipation layers, λD , indicates that
λD = 14.5 δ Re−3/4

δ Sc−1/2. The dependence on Reδ (and δ) is consistent with the
hypotheses of Kolmogorov and Batchelor. No evidence is found from the data that
Taylor scaling (λD ∝ δ Re−1/2

δ ) plays a significant role in the scalar dissipation process.
The scaling coefficient in the λD relation, Λ = 14.5, is slightly higher than the

values found previously in round jets (Buch & Dahm 1998; Tsurikov & Clemens
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2002; Tsurikov 2002). Careful reading of the results suggests that this coefficient, Λ,
may not be universal for different flow geometries. It is more likely that a geometry-
independent relationship exists between λD and the Kolmogorov and Batchelor scales,
η and ηB . The present data show that λD ≈ 5.4 η Sc−1/2 = 5.4 ηB , i.e. that the average
layer thickness is roughly 5.4 times the Batchelor scale. While the present data confirm
the Re−3/4

δ dependence of λD with a single scaling coefficient, Λ, for Reδ from 3290 to
8330, the recent results of Tsurikov (2002) at very high Reynolds number suggest that
different values of Λ may be relevant in different Reynolds number regimes, perhaps
separated by the mixing transition (Dimotakis 2000). Data for λD as a function of
Reδ for a wider range of Reynolds numbers than are available from the present data
would be needed to address this.

The range of length scales resolved by the present data, from the dissipation scales
up to nearly the full flow width, is well suited for a priori testing of subgrid models
for scalar mixing in LES. Comparison of two models for subgrid scalar variance,
a scale-similarity model and a gradient-based model, shows that the scale-similarity
model is more accurate as the LES filter size increases. The scale-similarity model is
thus preferred when the LES formulation is exploited by imposing a large separation
between the fine mixing scales and the LES grid filter scale. A priori testing of this
form can be very useful both in assessment and development of subgrid models
for scalar mixing, which are necessary in combustion applications. For maximum
flexibility, simultaneous scalar and velocity field measurements would be ideal, as this
would allow investigation of quantities such as the subgrid scalar flux terms.
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